Optimality of Bernstein Representations for Computational Purposes

نویسندگان

  • Jorge Delgado
  • Juan Manuel Peña
چکیده

In this article, optimal properties of the Bernstein basis of polynomials are revisited. In particular, these include optimal shape preserving properties and optimal stability for the evaluation in computer aided geometric design, minimal conditioning of its collocation matrices and fastest convergence rates of the corresponding iteration approximation property. Recent advances on stable evaluation algorithms for this basis will be also presented and discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Strong convergence for variational inequalities and equilibrium problems and representations

We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...

متن کامل

A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

متن کامل

A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials

In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...

متن کامل

Optimality of generalized Bernstein operators

We show that a certain optimality property of the classical Bernstein operator also holds, when suitably reinterpreted, for generalized Bernstein operators on extended Chebyshev systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Reliable Computing

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2012